If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-2n-1000=0
a = 1; b = -2; c = -1000;
Δ = b2-4ac
Δ = -22-4·1·(-1000)
Δ = 4004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4004}=\sqrt{4*1001}=\sqrt{4}*\sqrt{1001}=2\sqrt{1001}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{1001}}{2*1}=\frac{2-2\sqrt{1001}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{1001}}{2*1}=\frac{2+2\sqrt{1001}}{2} $
| 27x+8=11 | | -6(t-8)-(t+4)=5 | | 3z+14=2z+5 | | 3(2x+5)=2(4X+11) | | x-3+x-4=1-2x | | 4x/7+12=0 | | 10+x=34-5x | | -5(t-8)-(t+2)=8 | | g1/2=3/4 | | 10+x=35-5x | | 60=3x-3(5x+12) | | -8(t-2)-(t+6)=11 | | b−4.4=4.6 | | p+5=7.9 | | 1/3+w=6 | | -36-4x=10-6x | | -8(t-5)-(t+4)=11 | | 5.1÷1=b | | n+2/3=10 | | 2x-4+6x=-12 | | 5f=14.2 | | k+9/10=5 | | 7x-5(-2x-6)=166 | | 8y+4=8 | | -9x-8=27-6(6x-8) | | 7v-34=-3(v+2) | | 3/5+z=9 | | 7x-5(-2x-7)=137 | | q-9=3/8 | | 4x+3=-31 | | ((1200x-1428)/1200x)=0.8 | | -48/x=60 |